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Abstract--Tectonic strain includes contributions from small faults, with length less than the thickness of the 
brittle upper crust. This study derives algebra to determine the strain associated with small faults that follow a 
power-law (i.e. fractal) distribution, independent of assumptions concerning how they relate to large faults in the 
same region, and discusses how to apply this algebra for a range of small fault sample types. The method is 
illustrated using as case studies the Jurassic extension in the North Sea, the Miocene and younger extension in the 
Gulf of Suez, and the Hercynian strike-slip faulting the Badajoz-Cordoba fault zone in southern Spain. My 
preferred estimates for the strain accommodated on small normal faults, with length < 10 km, are --0.04 in the 
North Sea and -0.1 in the Gulf of Suez: -20  and -30% of the overall extensional strain in each region. This 
estimate makes the percentage of strain accommodated on small faults in the North Sea smaller than values in 
studies that assume that a single power law fits both small and large faults. My preferred estimate for the strain 
accommodated on small strike-slip faults in the Badajoz-Cordoba fault zone is -0 .3 ,  which may be -75% of the 
overall strain accommodated in this zone. These faults are more closely packed than the normal faults in the other 
localities. 

INTRODUCTION 

LARGE faults, which cut the brittle upper crust, are 
sufficiently sparse in most regions that the strain contri- 
bution from each can be estimated individually. Most 
regions also contain many small faults, with length less 
than the thickness of the brittle upper crust. Their strain 
contribution can be added to that of the large faults to 
give the overall strain from faulting. Such an estimate 
can in principle be compared with independent esti- 
mates of strain, for example from crustal thickening or 
thinning, to quantify the importance of faulting during 
tectonic deformation. 

Although simple in principle, in practice the compari- 
son of independent estimates of strain has for many 
years been controversial. Some studies argue that large 
faults take up most strain, and with a minor addition to 
cover small faults, can match independent estimates of 
strain. However, others (e.g. Ziegler 1983) have noticed 
apparent 'extension discrepancies' in extensional pro- 
vinces, asserting that the contribution from large normal 
faults may dramatically underestimate the extensional 
strain. It has been suggested that small faults may 
account for these discrepancies (e.g. Marrett & All- 
mendinger 1992). 

Quantifying strain associated with small faults is com- 
plicated by effects of sampling. It is not usually possible 
to sample small faults in three dimensions; sampling is 
instead usually only possible in one or two dimensions. It 
is thus necessary to have the algebraic means to quantify 
the three-dimensional fault population in any region 
from one-dimensional or two-dimensional studies. 
Some past studies (e.g. Scholz & Cowie 1990, Marrett & 
Allmendinger 1991, 1992, Walsh et al. 1991, Jackson & 
Sanderson 1992) have published algebra for their par- 
ticular sampling style. However, this has either been 

normalized to compare strain contributions for faults of 
different sizes or expressed in terms of arbitrary size 
limits of faults (rather than the limit at the transition 
from small to large faults). The absence of appropriate 
theory has made it difficult to resolve the conflicting 
viewpoints concerning the importance of small faults. 

This study presents algebra to quantify numbers and 
absolute strain contributions of small faults, and illus- 
trates its application--including potential pitfalls that 
may arise-using appropriate case studies. It thus differs 
from other studies that determine strain contributions 
for small faults as a proportion of the contribution from 
the large faults in the same region, without calculating 
the strain associated with faults in either size range. 
First, algebra is derived to give strain for populations of 
small faults. Second, algebra is derived to interrelate 
distributions of small faults obtainable with different 
sampling geometries. Third, the algebra is used to ana- 
lyse, as case studies, the data sets of Heffer & Bevan 
(1990) for faults in the Gulf of Suez, Walsh et al. (1991) 
for faults beneath the North Sea, and Jackson & Sander- 
son (1992) for the Badajoz-Cordoba fault zone in 
southern Spain. 

ANALYSIS OF POPULATIONS OF SMALL 
FAULTS 

Previous work relating displacement, length and 
numbers of faults 

Past studies relating fault lengthL and displacement 
D usually suggest power laws with 

D = BL ~, (1) 
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Table 1. Notation 

Term Units  Meaning 

L m 
Lmi n m 
L 0 m 
Lma x m 
D m 
W m 
J m 
H m 
e dimensionless 
Mg m 3 
n dimensionless 
B m -n+l  

N dimensionless 
c dimensionless 
a m c-3 

N 2 dimensionless 
c 2 dimensionless 
a 2 mC2 -2 
N l dimensionless 
c~ dimensionless 
a I mq -1 
Pl dimensionless 
P2 dimensionless 
YO mnC2-2 
c~L m 
k dimensionless 

Fault length 
Min imum length of small faults in a region 
Maximum length of small faults in a region 
Maximum length of large faults in a region 
Fault displacement 
Length of region where fault sampling is carried out  
Width of region where fault sampling is carried out  
Vertical extent  of region where fault sampling is carried out 
Strain 
Geometr ic  momen t  
Exponent  in power law linking L and D 
Scale factor in power law linking L and D 
Number  of faults in a given three-dimensional  sample above a given L or D 
Exponent  in power law linking N and D 
Scale factor in power law linking N and D 
Number  of faults in a given two-dimensional sample above a given L or D 
Exponent  in power law linking N2 and D 
Scale factor in power law linking N2 and D 
Number  of faults in a given one-dimensional  sample above a given L or D 
Exponent  in power law linking N t and D 
Scale factor in power law linking N l and D 
Probability that  a fault is sampled in one-dimensional  sampling 
Probability that a fault is sampled in two-dimensional sampling 
Constant  of proportionality in incremental  fault number-densi ty  distributions 
Range  of L in incremental fault number-densi ty  distributions 
Ratio of  6L to L 

where B and n are constants. This empirical fitting of 
observations of fault size is sometimes used as evidence 
for self-similar fault growth. Walsh & Watterson (1987, 
1988) suggested n = 2, consistent with self-similar 
growth where D increases by the same amount  each time 
the fault slips. Others (e.g. Marrett  & Allmendinger 
1991) have suggested n - 1 . 5  instead, consistent with 
self-similar growth where each time the fault slips the 
increment to D is proportional to the number of times 
the fault has slipped. Marret t  & Allmendinger (1991) 
determined n = 1.46 and B = 8.91 x 10 -3 km -°46, 
which predicts that a fault with L = 1 km will have D ~ 9 
m. Scholz & Cowie (1990) suggested instead that n is =1,  
with B dimensionless. They argued that B may be as high 
as 0.01, such that a typical fault with L = 1 km will have 
D = 10 m; a similar value. 

Much of the recent literature has adopted notation 
where N(D)  denotes the cumulative number of faults in 
a given volume with displacement no less than D (Tables 
1 and 2). N(D)  is regarded as proportional to D raised to 
the power of - c ,  or N oc D -c, where c is a positive 
number. Assuming faults are uniformly distributed in 
position, the number in a cuboid of upper crust with 
width W, length J and thickness H will also be pro- 
portional to its volume, W J  H. These proportionalities 
can be converted into an equation by introducing a 
constant of proportionality a, such that 

N(D)  = a H W J D  -c. (2) 

The units of a are length to the power of c - 3, and are 
thus dimensionless if c = 3. 

This use of a constant of proportionality implicitly 
assumes that the distribution of small faults is open- 
ended,  and thus applicable to faults with arbitrarily large 
displacement and length. However ,  no real population 

Table 2. Comparison o fno ta t ions  

Parameter  S M W J 

D D d D d 
L L l L (2) 
n (1) C 2 n (2) 
B r* (1) c (2) 
q (2) c~ s (2) 
c 2 (2) C[ (2) (2) 
c C 1 C l (2) D 
nc C CtC2 (2) (2) 

S, M, W. and J denote Scholz & Cowie 
(1990), Marrett  & Allmendinger  (1991), 
Walsh et al. (1991), and Jackson & Sanderson 
(1992). Note (1) indicates that the study did 
not  use an algebraic symbol, but  instead 
assumed a constant  value for this parameter .  
Note (2) indicates that the study did not use 
this parameter ,  and so did not  define its sym- 
bol. Because the same letters are used for 
different parameters  in different notations,  
there is great potential for confusion if one is 
not  careful. 

of small faults can be open-ended,  because the thickness 
of the brittle upper crust limits their length. Appendix 2 
shows that use of a distribution of the form of equation 
(2) for small faults can lead to inconsistent results if 
combined with the assumption of an upper size-limit. 
However,  if one is careful one can avoid the errors in 
logic that follow from inconsistent assumptions, and 
derive valid equations that enable populations of small 
faults to be quantified using cumulative distributions. 

Effects of sampling cause additional complications. 
One is usually obliged to sample small faults either in 
two dimensions, for example from a map, or in one 
dimension, for example by noting faulted offsets of a 
reflector on a seismic section. Several studies (e.g. 
Heifer  & Bevan 1990, Walsh et al. 1991, Jackson & 
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Sanderson 1992) have noted practical difficulties with 
some sampling methods. This study is not concerned 
with such difficulties; it instead addresses how to use 
samples of fault populations once the sampling has been 
carried out. 

One- or two-dimensional sampling will miss small 
faults with increasing probability as their length de- 
Creases, because they do not intersect the sampling line 
or plane. They will thus cause different power laws 
between numbers of faults sampled and D (e.g. Marrett 
& Allmendinger 1991), with cumulative numbers N I ( D )  
and N2(D) and exponents cl and c 2 for one- and two- 
dimensional samples (see Appendix 1). Values of c can 
be estimated for small faults that are in part missed in 
one- and two-dimensional sampling as: 

c = c l  + 2 / n  (3) 

c = c2 + 1/n. (4) 

Geometric moment, Mg, is a scalar measure of the 
deformation associated with any fault, defined as the 
product of D and its area. The finite thickness H of the 
brittle layer, typically - 1 0  km, affects how Mg scales 
with L. For faults that cut the brittle layer, 

Mg = D L H  (5) 

(e.g. Scholz & Cowie 1990) but for small square equidi- 
mensional faults. 

Mg = D L  2. (6) 

If instead small faults are circular with diameter L, then 

Mg = ( z / 4 ) D L  2. (7) 

Small faults are assumed square throughout this study, 
because of the greater difficulty of sampling them when 
other shapes are assumed. For example, if they are 
assumed circular, L varies with distance of the sample 
line from the mid-point of the fault (e.g. Heifer & Bevan 
1990). 

Displacement will in general vary across any fault 
plane, decreasing to zero at its edges. Because most of 
this decrease is usually near these edges, average dis- 
placement is typically not much less than maximum 
displacement. Unless one by chance samples near an 
edge of a fault, an arbitrary displacement sample will 
thus typically not differ much from the maximum or 
average value. In equations (5)-(7) D is average dis- 
placement; in (1) and (2) D is the arbitrary sample where 
the sample line or plane crosses the fault. Marrett & 
Allmendinger (1990) argued that assuming a given ran- 
dom sample indicates average displacement will typi- 
cally cause minimal error. This study adopts their view, 
treating these quantities as equivalent. 

Previous work  on strain associated with populat ions o f  
small faults 

Scholz & Cowie (1990) calculated cumulative Mg of 
small faults, EMg, assuming that D and L are related 

using equation (2), by integrating Mg as a function of 
fault size treating the faults as a continuous distribution 
with L up to L0. Assuming small faults are square, when 
generalized for equation (1) instead this relation gives 
(see Appendix 1): 

aBl-C c W J H L  2 +"-"c (8) 
EMg - 2 + n - nc 

The strain tensor eid associated with these faults can be 
calculated using Kostrov's (1974) method. If the scalar 
geometric moment is replaced by elements of a geo- 
metric moment tensor Mgi,j (i , j  = 1,3) using information 
on the fault orientations and slip senses, then 

EM~/,i. (9) 
el,~ = 2 W J H  

The orientation of the principal axes, or eigenvectors, 
of this tensor will depend on the orientations and slip 
senses of individual faults within the deforming region. 
For example, if a region contains a set of dip-slip faults 
with dip of 45 ° , which take up either extension or 
shortening, the horizontal eigenvectors will be associ- 
ated with an eigenvalue that gives the extensional (or 
shortening) strain, e. The value of e can then be deter- 
mined from the sum of scalar geometric moments YMg 
(see e.g. Westaway 1992a): 

EMg 
e = • ( l O )  

2 W J H  

When typical fault dip 6 is not 45 °, the horizontal strain 
can be determined instead as: 

EMg sin (26) 
e = (11) 

2 W J H  

(see e.g. Westaway 1992b). For extension on normal 
faults with dip 6, the extensional strain is thus: 

aBl-Cc sin (26)L 2+n-no 
e = (12) 

2(2 + n - nc) 

The amount of extension will equal e W  provided e << 1. 
This reasoning assumes that populations of small 

faults follow power laws between L and D, and N and D. 
In (12) strain is proportional to a, indicating that it is 
impossible to quantify strain on small faults without 
knowledge of their number densities. Furthermore, be- 
cause e depends on Mg, and Mg depends on both L and 
D, e has to be a function of both L and D. Any estimate 
that results for the strain accommodated by a population 
of small faults is thus subject to the use of some relation 
between L and D. 

If one accepts that the overall faulted displacement 
across any profile equals the sum of displacements on 
faults within it (see e.g. Westaway & Kusznir 1993) then 
one-dimensional sampling of N1(D ) can give the faulted 
displacement along any profile (e.g. Jackson & Sander- 
son 1992), and hence the strain, independent of the 
relation between fault displacement and length. How- 
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ever, this method does not reveal how much of this strain 
is associated with small faults. The limit of D for small 
faults depends on the brittle layer thickness via equation 
(1), and cannot be determined by one-dimensional sam- 
pling (see below, also Appendix 1). 

Scholz & Cowie (1990) derived an analogous equation 
to (8) for large faults, assuming that equation (2) links L 
and D with n = 1. They estimated c for these faults as 
-1.1 using data from an approximately 3000 km 2 loca- 
lity in Japan where H is -10  km. The largest fault has L 

500 km, and sampling appeared complete down to L 
- 10 km. They showed that with these parameters, the 
faults sampled accounted for over 95% of the estimated 
EMg. Even if the largest fault had been only -20  km 
long, according to fig. 3 of Scholz & Cowie (1990) faults 
with L -10  km or more would account for -80% of 
EMg. Their results suggest that almost all the strain in 
this locality is associated with large faults and it is simple 
to correct for the small faults that are missed to get a 
reliable estimate of the overall strain. Many other 
studies have numerically modelled deformation, includ- 
ing extension, assuming it is taken up on a limited 
number of large faults (e.g. Kusznir et al. 1991). The 
impressive match that can be obtained between obser- 
vations and these models suggests strongly that not 
much strain is associated with smaller faults that are 
omitted from the modelling. 

Walsh et al. (1991) suggested that c derived from the 
two-dimensional sampling by Scholz & Cowie (1990) 
should be corrected using equation (4) to give the true 
three-dimensional fault distribution. However, because 
Scholz & Cowie's (1990) c value was derived for faults 
with L ~> 10 km, which most likely cut the brittle layer, it 
is wrong to make such a correction to their data set: for 
these large faults the three-dimensional exponent c will 
equal the exponent from the lower-dimensionality 
sample. Marrett & Allmendinger (1991) also showed 
that the method of Scholz & Cowie (1990) gives only an 
approximate result, because it treats the faults as a 
continuous distribution right up to the largest fault. 
Marrett & Allmendinger (1991) calculated Y.Mg instead 
treating the largest faults individually and the others as a 
continuum. They showed that this gives greater moment 
associated with the largest faults. They also suggested 
that their n value of -1.5 was more appropriate than the 
value of -1  that Scholz & Cowie (1990) used. Increasing 
n (keeping c, B and L0 constant) will in general increase 
Y~Mg for a population of small faults. However, the 
different values of B associated with different n may 
counteract this effect, causing smaller Y.Mg for larger 
values of n. One of the case study localities discussed 
later (the Gulf of Suez) indeed shows smaller strain for 
larger n. Neither the use of n > 1, nor the individual 
treatment of the largest faults, nor consideration of the 
sampling geometry (given that L ~> 10 km), thus necess- 
arily invalidate Scholz & Cowie's (1990) conclusion that 
most geometrical moment in a region may be associated 
with the largest faults there. 

Walsh et al. (1991) deduced that c is -2 -3  for normal 
faults that took up late Jurassic extension in the northern 

North Sea, with heave and throw (vertical component of 
D) -1  mm to -0.5 km. They adopted the relation for 
D(L) from Marrett & Allmendinger (1991), which gives 
L - 15 km for D - 0.5 km. Except for a few of the largest 
faults that they considered, their sample thus had L < H 
and thus required correction for the one-dimensional 
sampling. They obtained samples of NI(D) from seismic 
sections (for D ~> 10 m) and boreholes (for D <~ 0.01 m), 
which both fit cl = 0.8. They then corrected cl using 
equation (3) to give c. With n = 1, c would be -2.8,  and 
with n = 1.5, c would be -2.1.  Assuming a self-similar 
distribution with these larger c values, they deduced that 
the proportion of strain associated with small faults is 
much larger than Scholz & Cowie (1990) concluded. 
Walsh et al. (1991) showed that with c 1 = 0.8 and the 
largest heave of 5 km, if the smallest heave considered is 
0.1 km, near the limit of resolution on their seismic 
sections, almost half the likely total geometric moment 
of small faults is missed. They thus assumed self- 
similarity with the same power-laws for N(D) and D(L) 
for both large and small faults, although they calculated 
Mg appropriately for the two populations and treated 
the largest faults individually. They estimated that small 
faults, many of which are below the limit of resolution on 
seismic sections, probably account for 40% of the exten- 
sion across the North Sea. Marrett & Allmendinger 
(1992) reached similar conclusions, arguing that the 
proportion of strain associated with small faults may be 
up to 60%. Their results indicate that the extension 
across the North Sea is uncertain by >30% even after 
detailed analysis including correction for small faults. 
These results imply that it is futile to try to estimate 
strain from faulting in most other regions, which are less 
well documented. 

Much of this work on fault sampling has assumed that 
a certain proportion of strain is associated with small 
faults, which is independent of the actual strain in any 
region. The debate has concerned whether this pro- 
portion is small (say ~<20-30%) or large. Westaway 
(1992a) suggested instead that this view may be mis- 
taken. He pointed out that if the strain in any region is 
small, there is no reason why all of it need not be 
accommodated on small faults. Given that the upper size 
limit of small faults is fixed by the thickness of the brittle 
upper crust, as strain increases the number density of the 
faults, and/or their displacement to length ratio will need 
to increase. The small faults may eventually become so 
closely spaced that they will interact, linking up to form 
larger faults that may cut the brittle layer. If this alterna- 
tive view is correct, the proportion of strain associated 
with small faults will vary between regions. The absolute 
strain accommodated on small faults may tend towards 
an upper limit, which is determined by their maximum 
number density (the parameter a in equation (12)). This 
may vary between regions, and possibly also between 
fault types. In order to investigate further whether this 
view is correct, it is necessary to investigate individual 
case study localities in more detail than has so far been 
attempted. New theory is also required to enable these 
localities to be analysed. 
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New theory for strain associated with populations of  
small faults 

Assuming that a population of small faults obeys 
power laws for N(D) and D(L) as in equations (1) and 
(2), Appendix 1 derives relations between the one- and 
two-dimensional number-density parameters al and az 
and exponents c 1 and c2, and the three-dimensional 
parameters a and c: 

N,(D) = alWO -~ (13) 

and 

N2(D) = aaWJD-% (14) 

N1 and N 2 are numbers of small faults with displacement 
no less than D in one- and two-dimensional samples 
across a zone with width J and length W. Appendix 1 
gives the relations between a, al and a2. These depend 
on B and n, which are thus critical parameters: as well as 
relating L and D, they also affect values of a derived 
from observations of a~ or ae. 

Appendix 1 shows that equation (12) can be converted 
into a form (equation A1.17) that depends only on D O 
and parameters from the one-dimensional sample (see 
also Jackson & Sanderson 1992). This equation appears 
to be independent of B and n, and thus avoids conten- 
tion as to their values. However, because L0 establishes 
the upper limit of small faults, obtaining D O and L 0 
requires equation (1). The strain contribution of small 
faults is thus not independent of B and n, as is expected 
given that strain depends on cumulative geometric mo- 
ment, and geometric moment of each fault depends on 
both L and D. To make this explicit, (Al.17) can be 
adapted by substitution (using equation 1) to give the 
strain for small faults with dip 6 and length Lmi n -- 0 to 
L0, sampled perpendicular to strike, as 

alc I c o s  (t~)Bl-C,L~ (l-cO 
e = (15) 

(1  - c l )  

unless c I is precisely 1. Strain does depend on B and n, 
but B is to the power 1 - Cl. With cl almost 1 the 
dependence of e on L0, B and n will be weak. 

The strain, e, associated with any given power-law 
distribution of small faults thus in general depends on 
L0, a, B, c and n (see Appendix 1). When c is much 
smaller than 3, e depends strongly on L0. When c is 
almost 3, the dependence of e on L0 is weak (as noted by 
Walsh et al. 1991), and e depends more strongly on a, B, 
c and n. 

If cl = 1, c2 = 1 + 1/n or c = 1 + 2/n (Appendix 1), an 
equal proportion of strain is associated with the small 
faults in each order-of-magnitude range of L, and the 
integral for strain would be infinite if the lower limit of L 
were zero. If any of these exponents is observed, inte- 
gration must be truncated at a finite lower limit Lmi  n- 

This may be -1  mm, the typical grain size in many rock 
types (Walsh et al. 1991). Westaway (1992a) has shown 
that this distribution (with n = 1 and c = 3) is consistent 
with one of the simplest models for growth of popu- 

lations of small faults (see also Sornette & Davy 1991). 
Because of this link with a simple model, my preference 
is to use n = 1 when estimating strain. However, when 
analysing observational case studies I also estimate 
strain using the alternative n value of 1.46 suggested by 
Marrett & Allmendinger (1991). 

Appendix 1 thus addresses the estimation of strain 
accommodated by populations of small faults. It shows 
that consistent estimates can be obtained for different 
methods of sampling small faults. It also establishes how 
to convert between parameters estimated using different 
sampling methods, for instance how to calculate the 
parameters describing the three-dimensional distri- 
bution of small faults in a region from a one- or two- 
dimensional sample, and how to predict incremental 
fault distributions from cumulative distributions (and 
vice versa). 

New theory for the spacing of small faults 

It is important to have the means to estimate how 
closely spaced the faults of a given size are, in a region. 
Appendix 2 attempts to address spacings of small faults 
using parameters for cumulative distributions. Equation 
(A2.2) estimates the length W1 of the one-dimensional 
sample line needed before one encounters a small fault 
with length L0 or greater. Equation (A2.7) estimates the 
horizontal length W2 perpendicular to fault strike of the 
two-dimensional sample plane needed before one en- 
counters a small fault with length Lo or greater. W2 is 
always cz/cl times WI: the two are not consistent. 
Equation (A2.5) estimates the area A2 of a vertical 
two-dimensional sample plane needed before one en- 
counters a small fault with length L 0 or greater. 
Equation (A2.10) estimates the vertical cross-sectional 
area A3 of the three-dimensional sample volume needed 
before one encounters a small fault with length L0 or 
greater. A3 is always c/c 2 times A2: once again, the two 
are not consistent. 

Appendix 3 shows instead that it is possible to obtain 
consistent results for fault spacings and number densities 
using incremental distributions. Equations (A3.11), 
(A3.6) and (A3.2) give number densities of faults with 
length around a particular value of L, from three-, two- 
and one-dimensional distributions. Appendix 3 shows 
explicitly that estimates derived using these equations 
from incremental distributions of different dimensiona- 
lity are always consistent, regardless of the length of 
fault considered. However, when dealing with in- 
cremental distributions, one cannot estimate numbers of 
faults with precisely some particular length. One is 
obliged instead to estimate numbers of faults within 
some range of L, which I call 6L, about the L value 
under consideration. One may either keep 6L constant, 
regardless of L; or one may work in terms of 6L keeping 
a constant proportion of L, using k to denote the ratio 
6L/L. Appendix 3 shows that these two methods of 
representing populations of small faults will result in 
different exponents in their incremental distributions. 

It is now possible to see why many valid results for 
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Table 3. Distributions of small faults in the study regions 

ON ON ~N 
cl c2 c a (10 km) (1 km) (0.1 km) 

n = 1 (B = 0.01) 
Gulf  of  Suez 1.0 2.0 3.0 0.42 × 1 0 - 6 k m  - ° °  0.09 90 90,000 
North Sea 0.8 1.8 2.8 0.79 × 10 -6 km - ° 2  0.14 88 56,000 
B C F Z  0.9 1.9 2.9 1.55 × 10 -6 km -° ' l  0.36 284 225,000 

n = 1.46 (B = 8.91 × 10 -3 km -°'46) 
Gulf  of  Suez 0.69 1.37 2.05 0.26 × 10 -4 km -°94 0.09 90 90,000 
North Sea 0.80 1.48 2.17 0.16 × 10 -4 km -°83 0.096 143 211,000 
BC F Z  0.90 1.58 2.27 0.31 × 10 -4 km -°'73 0.223 460 948,000 

For the Gulf  of  Suez Y0 and nc 2 are observed and other  parameters  are derived. For the North Sea and the 
Badajoz-Cordoba fault zone (BCFZ),  al and cl are observed and other  parameters  are derived. 6N values are 
es t imated numbers  of  faults with L = 10, 1 and 0.1 km in each 1000 k n f  of  crustal volume, est imated using 
equat ion (A3.2) with k = 0.1. 

strain can be obtained using algebra for cumulative 
distributions of small faults, even though the true popu- 
lation of small faults is not open-ended,  but instead gives 
way to a population of large faults possibly with a 
different exponent.  Suppose the number NL of large 
faults with displacement D or greater in a region with 
dimensions W x J x H is given by 

N L ( D )  = aL W J H D  -c, (16) 

where aL and cL are the number-density and exponent  of 
large faults, analogous to a and c for small faults. Using 
(1), (16) can be rewritten as 

N L ( L  ) = a L W J H B - C L  -nc. ( 1 7 )  

Equation (A1.1) gives the number of small faults that 
would exist in a region if their distribution were open- 
ended. Use of equation (AI.1)  with L = L0, the upper 
length-limit for small faults (and thus the lower length 
limit for large faults) would give a notional number of 
small faults expected with length above Lo, but which do 
not actually exist. I will call this number N x. Equation 
(17) gives the number of large faults with length above 
L0, which I will call Ny. The true number of faults with 
length no greater than L, where L < L0, is thus 

N = a B - C W J H L  -nc + ivy - N x (18) 

which will in general differ from the number given by 
(A1.1) (because Nx and N r are not necessarily equal). 
However ,  if (18) is differentiated, as is required to 
obtain strain or numbers of small faults in any length 
range (see Appendices 1 and 3), the contribution from 
the two constant terms Ny and Nx disappears, and one is 
left only with the term that is present when (AI.1)  is 
used in its original form. The procedures for estimating 
WI,  Wz, A z  and A3 in Appendix 2 each implicitly assume 
the population of small faults is open-ended and persists 
to arbitrarily large L, whereas in reality it is not: it is 
bounded by a population of large faults. 

OBSERVATIONAL CASE STUDIES 

The North Sea 

Large normal faults in the northern North Sea account 
for --20 km of late Jurassic extension across a zone that is 

- 2 5 0  km wide (e.g. Roberts et al. 1990). Spatially- 
averaged Jurassic extensional strain across these faults 
is thus -0 .09 .  Because small faults also contribute to 
local strain, this estimate is a lower bound for the total 
strain from faulting. Walsh et al. (1991) and Marrett  & 
Allmendinger (1992) have suggested that the pro- 
portion of extensional strain associated with small 
faults in the northern North Sea is substantial, perhaps 
- 6 0 %  of the total. However,  as already noted they did 
not estimate the absolute strain associated with these 
faults. 

Walsh et al. (1991) analysed normal faults in the North 
Sea using one-dimensional sampling at several scales. 
They obtained vertical samples of N I ( D  ) for D > 1 mm 
using core from boreholes. They compared these with 
horizontal samples of NI (D) from seismic profiles on the 
regional scale and on the scale of individual oilfields, for 
D - 1 m to ~>1 km, using a typical fault dip, 6, of - 6 0  °, to 
convert numbers of faults between the two types of 
sample. Their  regional-scale profiles have W ~ 250 km, 
N l (1 km) = 6 and Cl ~ 0.8, making al ~ 0.024 km -°'1. 
With 6 = 60 ° , if n = 1 and B = 0.01, then c = 2.8 and 
a = 0.69 × 10-6km -°a.  I fn  = 1.46 and B = 8.91 × 10 -3 
km -°'46 instead, then c = 2.17, and a = 1.38 x 10 -5 
km -°s3. Consistency between their reported cumulat- 
ive number of faults and number of faults per unit length 
of section requires W ~ 30 km. For a single profile 
N1(0.1 km)is  - 5 ,  and with c 1 - 0 . 8 ,  al is -0 .026  km -°'a 
For 56 profiles together,  NI(0.1 km) is -170 ,  so on 
average for a single profile Nl(0.1 km) is - 3 ,  and al is 
-0 .016  km -°2.  These estimates from local profiles thus 
bracket the regional value. 

Using equation (15), the contribution of faults with L 
up to L0 can be estimated for cl = 0.8 and at = -0 .02  
km -°'2. Values of a and other parameters can be esti- 
mated using equations from Appendix 1 (Table 3). With 
n =  l a n d B = 0 . 0 0 1 ,  f o r L 0 =  l k m ( D  0 =  1 0 m ) , e i s  
-0 .016;  for Lo = 10 km (D O = 100 m), e is --0.025. 
Assuming n = 1.46 and B = 8.91 x 10 -3 km -0"46, for L 0 
= 1 km (Do = 89 m) e is -0 .023;  for Lo = 10 km (Do = 
257 m) e is -0 .030  (Table 4). All these strain estimates 
are small, no greater than -0 .03  and thus no more than 
- 3 0 %  of the contribution from large faults (Table 4). 
Only a small fraction of strain in the northern North Sea 
has thus been taken up by small faults with L < 10 km. 
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Table 4. Strain estimates 

Previous work This study 

~s]t~tot EL/etot E's/Eto t EL/£to t 
(%) (%) EL n ~, e,o, (%) (%) 

North Sea - 4 5  - 5 5  0.087 1.46 0.036 0.123 29 71 
1 0.025 0.112 22 78 

Suez - 3 0  - 7 0  0.27 1.46 0.036 0.306 12 88 
1 0.102 0.372 27 73 

BCFZ - 6 0  - 4 0  0.06 1.46 0.36 0.42 86 14 
0.09 1 0.29 0.38 76 24 

es and eL denote the extensional strains associated with small (L < 10 kin) and large 
faults, ~'tot ( = ~ ' L  + es)  being the overall extensional strain. For the North Sea, estimates 
from previous work use fig. 4 of Walsh et  al. (1991),  which shows eL for faults above each 
value of D as a function of c 1. Walsh et al. (1991) indicated that 6 is typically -60* in the 
North Sea, so sin(26) is -0 .87 ,  and supported the use of Marrett & Allmendinger 's 
(1991) equation (with n = 1.46) linking L and D, which predicts D = 0.26 km for L = 10 
km. Walsh et al. (1991) calculated that this value of D gives eL = 55% for q = 0.8. For 
the Badajoz-Cordoba fault zone, the estimates from previous work by Jackson & 
Sanderson (1992) are for proportions of strain accommodated on faults below and above 
the resolution of Spanish 1:50,000 geological maps. The limit of fault displacement 
resolution of - 0 . 1  km roughly matches the transition from small to large faults. For the 
Gulf of Suez, nc 2 is 2. If n is taken as 1.46, from M arrett & Allmendinger (1991), then q 
is 0.68. Figure 3 of Walsh et al. (1991) gives e L - 7 0 %  for D -0 .26  km with q ~0.7. The 
e L value from this study for the Gulf of Suez is from summation of heaves. The 
alternative rigid-domino interpretation gives etot = 0.23. My analysis gives e~ = 0.036 for 
n = 1.46, making/~s/£tot : 16% and ~L/£tot ~--- 84%. With n = 1 it gives es = 0.102, making 
es/eto t = 44% and gL/~'to t = 56%. 

The Badajoz-Cordoba fault zone 

The Badajoz-Cordoba fault zone (BCFZ) is an 
ancient NW-SE-trending left-lateral fault zone in 
southern Spain, which is exposed for - 3 0 0  km length. 
During Hercynian time it became cut by SSW-trending 
left-lateral strike-slip faults, which offset its SE-trending 
branches leftward, and which mark the last phase of 
deformation in its vicinity. Jackson & Sanderson (1992) 
investigated the displacement on these SSW-trending 
faults. No independent  estimate of strain, other than 
from fault sampling, is available. 

Jackson & Sanderson (1992) investigated the power 
law governing NI(D ), using one-dimensional sampling 
across profiles on published 1:50,000 maps (each of 
which appears to cover 40 km length) and more detailed 
one-dimensional sampling in the field. Their  parameter  
C is equivalent to my alW, although they omitted its 
units. Some of their figures normalize NI(D ) per unit 
length of sample line: as NI(D)/W in terms of my 
notation. The scale factor of this normalized parameter  
is equivalent to my al, and is not---of course - -  
dimensionless. Their  fig. 8 shows a one-dimensional 
sample of NI(D)/Wfit to a single power law with Cl = 0.9 
and a 1 -0 .05  km -°1 ,  which fits both their map and field 
data sets. Their  field data appear complete for displace- 
ment - 1 0  mm to - 0 . 5  m; their map data appear com- 
plete for displacement --50 m to - 1  km. Their  observed 
value of al makes a = 1.55 × 10 -6 k m - ° l  for n = 1.0 and 
B = 0.01, or a = 0.31 x 10 -4 km -°73 for n = 1.46 and 
B = 8.91 x 10 -3 km -°46. 

Table 3 indicates that, at all scales examined, the 
BCFZ is roughly three to four times as pervasively 
faulted as the North Sea. Treating all the faults sampled 
as SSW-trending vertical left-lateral faults and neglect- 

ing effects of any finite lower size limit, from equation 
(A1.43) the overall displacement accommodated on all 
faults with D up to 0.1 km is 0.36 km for each kiiometre 
of along-strike length in the ESE direction, or 107 km 
throughout the 300 km distance where the BCFZ is 
exposed (assuming it is all as pervasively faulted as the 
length that was examined). The left-lateral shear strain 
associated with these faults is thus -0 .36 .  

Assuming brittle layer thickness 10 km, with B = 0.01 
and n = 1 the limit Do = 100 m also marks the limit of 
small faults, and the strain of - 0 . 3 6  calculated above is 
thus accommodated on small faults. With B = 8.91 x 
10 -3 km -1 and n = 1.46, L = 10 km corresponds to D = 
257 m instead. The estimated strain accommodated on 
small faults rises to -0 .39 .  On the other hand, cl for the 
BCFZ is sufficiently near 1 that the lower length limit of 
small faults can affect estimation of strain. Assuming 
this limit is 1 mm, the absence of smaller faults (below 
Dmi n = 0.01 mm for n = 1 or ~1.5 X 10 -5 mm for n = 
1.46) will reduce estimated strain by -0 .0 7  (n = 1) or 
-0 .03  (n = 1.46). The estimated strain accommodated 
on small faults in the BCFZ is thus -0 .2 9  for n = 1 and 
B = 0.01, or 0.36 for n = 1.46 and B = 8.91 x 10 -3 
km-°46. 

Faults with D of 0.1-1 km (the upper limit considered 
by Jackson & Sanderson 1992) will contribute strain 
-0 .09 ;  faults with D 0.26--1 .kin will contribute strain 
-0 .06 .  Their  sampled fault distribution shows evidence 
that a small number  of the very largest faults may have 
been missed, and thus gives only a lower bound to the 
strain accommodated on large faults in the BCFZ. 
Analysis by Jackson & Sanderson (1992) suggested that 
- 6 0 %  of the strain in the BCFZ is accommodated on 
small faults. My analysis suggests that the proportion 
may be even higher: perhaps as high as 84% for n = 1.46 
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Fig. l .  Logarithmic graph of number  density of  faults from two- 
dimensional sampling, (-1/WJ) dN2(L)/dL, against L, for normal 
faults in the Gulf of Suez. Adapted from fig. 2 of Heifer & Bevan 
(1990). The power law fitted has exponent -nc 2 - 1 --- -3. As noted in 
Appendix 1, the parameter plotted in this figure is nc2a2 B-C2L-nC2 -I , 

and is 0.9 for L = 1 m. 

or 76% for n = 1. This is because of the close packing of 
small faults (Table 3), which are thus able to accommo- 
date substantial strain (Table 4). 

The Gulf  o f  Suez 

The Gulf  of Suez is a - 7 0  km wide zone of S W - N E  
extension. Extension appears  to have begun between 
late Oligocene and middle Miocene time, at - 2 5 - 1 5  Ma, 
and continues to the present  (e.g. Jackson et al. 1988). 
Two major  normal faults southwest of  the Gulf  have 
- 3 5  ° dip and are - 2 5  km apart  with heave - 5  km and 
tilt of adjoining beds - 1 0  ° (Jackson et al. 1988). Rigid 
domino analysis of these faults gives extension factor 
sin (45°)/sin (35 °) or 1.23, indicating extensional strain 
-0 .23 .  On the northeast  side of the Gulf,  large normal 
fault zones bounding the coast and up to ~20 km inland 
have combined heave also - 5  km (e.g. Moustafa 1993). 
Heaves  of the largest normal faults thus indicate exten- 
sional strain - 1 5  k m / - 5 5  km or -0 .27 .  Allowance for 
other normal faults that cut the brittle layer may increase 
this estimate. Spacings of and tilt angles around these 
major  normal  faults are such that summation of heaves is 
expected to give greater  extensional strain than rigid 
domino analysis (e.g. Westaway & Kusznir 1993). 

Heifer  & Bevan (1990) analysed faults in a 1000 km 2 
sample area along part  of the southwest flank of the 
Gulf, using two-dimensional sampling from maps and 
outcrop (Fig. 1). Almost  all of their data set is for faults 
with L < 10 km, which most  likely means small faults. 
Figure 1 shows a paramete r  y plotted against L,  such that 
y oc L -3 or y = yo L-3 ,  where Yo is a constant of 
proportionality.  Appendix  1 contains the theory needed 
to determine the three-dimensional population of small 
faults that is consistent with Fig. 1, enabling it to be 
compared  with the other case study localities that were 
sampled differently. From Fig. 1, for L = 1 m, y = 0.9 
m-3;  hence Y0 = 0.9. The - 3  exponent  in Fig. 1 means 
that nc2 + 1 = 3 or nc 2 = 2. If  n = 1 then c 2 = 2 and thus 

from equation (4) c = 3. Using equation (A1.36) with 
n = 1, c2 = 2, and B = 0.01, Y0 = 0.9 for L = 1 m gives 
a2 = 4.5 x 10 -s .  

Using equation (A1.29), again with c2 = 2, c = 3, and 
B = 0.01, a2 = 4.5 × 10 - s  means that a = 3 x 10 -7 for 
6 = 90 °. Westaway (1992a) reported this value of a as 
derived from Heifer  & Bevan (1990), but through length 
limitations was unable to explain how it was obtained. 
Heifer  & Bevan (1990) did not state the typical orien- 
tation of small faults in their study area. Given their 
horizontal sample planes from maps and outcrops, 
assuming 6 = 90 ° is equivalent to assuming that they are 
typically vertical. However ,  it is probably more realistic 
to assume that they dip at - 3 5 - 4 5  °, like the large normal 
faults nearby (Jackson et al. 1988). With 6 typically 45 °, a 
bet ter  estimate for a for the Gulf  of Suez is thus - 4 . 2  x 
10 -7. With 6 = 45 °, the largest small fault that can be 
present  has length L0 = H/cos (6):L0 = 10 km requires 
H -  7.1 km. 

The tailing-off of numbers  of faults in Fig. 1 below 
L - 1 m indicates incomplete sampling in the data sets 
shown. Other  data presented by Heifer  & Bevan (1990) 
show that the same distribution, with the - 3  exponent ,  
persists to the scale of microfractures with length 
- 1  mm,  giving a lower limit of L, Lmin, of --1 mm. For 
n = 1, the strain contribution from small faults in the 
Gulf of Suez is thus - 0 . 1 .  

Using the alternative relation between D and L with 
n = 1.46 and B = 8.91 x 10 -3 km -°46, c 2 is 1.37 and a2, 
from (16), is 7 × 10 -4 km -0"63. Using (A1.29), this gives 
a = 2.6 x 10 -5 km -°'94. Using (A1.38), the strain 
contribution from such a population of small faults with 
L 0 = 10 km would thus be 0.036. Note that this relation 
for D(L)  with n = 1.46 predicts less strain in the Gulf  of 
Suez than the alternative with n = 1. 

The Gulf of Suez illustrates the inconsistencies that 
result when at tempts are made to estimate fault spacings 
from cumulative distributions. Using equation (A2.5), 
for the two-dimensional sampling by Heifer  & Bevan 
(1990) one fault with length 10 km or greater  is expected 
to occur in sample plane area A2 = 222 km 2. If  this area 
is assumed square, it would have side length - 1 5  km. I f  
instead it is assumed rectangular with width Lmax, its 
length would be 22 km. In contrast,  using (A2.2) the 
length W1 of a one-dimensional profile needed to find 
one fault with length 10 km can be estimated as 11 km. 
With brittle layer thickness H - 7.1 km and fault dip 
6 = 45 °, f rom equation (A2.8) one would typically need 
to sample a 2360 km 3 volume,  with surface area of 333 
km 2, in order to find one fault of this size. If this surface 
area is square, it has side length - 1 8  km. These pre- 
dicted spacings from one-, two- and three-dimensional 
sampling thus differ in the ratio Cl : c2: c, as was estab- 
lished earlier to be true in general. The correct estimates 
in this case are Ne and a2, which are obtained directly by 
sampling. 

As Appendix 3 shows, consistent results for numbers 
and spacings of small faults can be obtained from in- 
cremental  distributions. With L o = 10 km and 6L = 
1 kin, such that k ( = r L / L )  is 0.1, using (A3.13) the 
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typical area required to find one fault by two- 
dimensional sampling is 1111 km 2. This k value is chosen 
so that all faults with length 9-10 km count as 10 km. 
From the derived three-dimensional fault distribution 
(equation A3.14), the sample volume required to find 
one such fault is 7857 km 3, which also means surface 
area 1111 km 2 given the assumed - 7 . 1  km thickness of 
the brittle layer. The typical spacing in any given direc- 
tion of faults in the length range 9-10 km in the Gulf of 
Suez can be estimated as the square root of 1111 km 2, or 
- 3 0  km. It is thus indeed comparable to the length of 
these faults. 

C o m p a r i s o n  o f  results 

Tables 3 and 4 summarize the distribution of small 
faults and strain estimates for the case study localities. 
The available data allow c to be estimated precisely, 
subject to assumed values of n. For  all three regions, c is 
- 2  if n is 1.46, but - 3  if n is 1 instead. For the North Sea 
and the BCFZ,  the two different n values give similar 
estimates of strain, the larger n value giving somewhat 
greater strain. The larger n value also indicates a greater 
number of faults, except for lengths near 10 kin. For  the 
Gulf of Suez, the smaller n value gives about three times 
as much strain as the larger value. Predicted numbers of 
faults in the Gulf of Suez are independent of n, because 
the fault sampling was carried out using a method that 
allows this to be so (see equation A3.16). For n = 1, 
greater numbers of faults are predicted in the Gulf of 
Suez than in the North Sea; for n = 1.46, greater 
numbers are predicted in the North Sea. Most estimates 
of strain associated with small faults are -0 .03 ,  except 
for the value of - 0 . 1  when n = 1 in the Gulf of Suez. The 
number density of small strike slip faults at each scale in 
the BCFZ is roughly four times greater than the number 
densities of small normal faults of the same scale in the 
two extensional provinces. These results thus support 
the conclusions of Westaway (1992a,b) that strains of 
~>0.01 may be taken up entirely on small faults, but 
require spacings of the largest small faults comparable to 
their dimensions. Substantially larger strains presum- 
ably require the development of large faults. 

Table 4 also compares the proportions of strain taken 
up on small normal faults estimated in this study with 
previous estimates for n = 1.46 from Walsh et al. (1991). 
I estimate the proportion of the extensional strain in the 
North Sea that is accommodated on small faults as 
- 2 0 % ,  regardless of n. This is a much smaller pro- 
portion than has been obtained by Walsh et al. (1991) 
and Marrett  & Allmendinger (1992). In the Gulf  of 
Suez, application of the method of Walsh e ta l .  (1991) for 
n = 1.46 would predict that - 2 0 %  of strain is taken up 
on small faults. This study predicts that for n = t the 
proportion of strain accommodated on small faults is 
actually much greater, - 4 0 % .  In the BCFZ,  may esti- 
mate of the proportion of strain accommodated on small 
faults is >70%,  even more than was suggested by Jack- 
son & Sanderson (1992). 

DISCUSSION 

As already noted, previous analyses have assumed 
that numbers of small and large faults in any given region 
follow a single self-similar distribution. This assumption 
leads to the ability to estimate proportions of strain 
associated with each fault population, without knowl- 
edge of the total strain or even of the number-density of 
faults in either population. My analysis predicts a similar 
proportion of strain associated with small faults for the 
Gulf of Suez with n = 1.46, compared with the older 
method. However,  the analysis predicts a much smaller 
proportion of the strain is associated with small normal 
faults in the North Sea. It is important to consider the 
significance of these differences. Do they mean that 
populations of small and large faults are self-similar in 
some regions but not in others? Do they mean that the 
uncertainties in both methods are so large that they 
cover both possibilities, so that it becomes a matter of 
personal preference which method is used? Or is one 
method demonstrably wrong in principle? 

In Fig. 1, a line with slope - 3  has been fitted through 
small faults with L < 10 km and large faults with L > 10 
km. Both fits seem reasonable. The fit through the small 
faults indicates nc 2 + 1 = 3, requiring nc 2 = 2 or nc = 3; 
the fit through the large faults indicates nc + 1 = 3, or 
nc = 2. Although both parts of the fitted line have the 
same slope (Fig. 2a), they thus indicate different ex- 
ponents c for large and small faults. If one-dimensional 
sampling of dNl ( L ) / d L  had been carried out in the Gulf 
of Suez, the figure would still show an exponent  of - 3  
for L > 10 km, indicating nc = 2 for large faults, as 
before. However ,  for L < 10 km the exponent - n c l  - 1 

would be - 2 ,  indicating nc 1 = 1. The graph of sampled 
numbers of faults would now have an upward kink at L 
= 10 km, when the exponent changes from - 2  to - 3  
(Fig. 2b). Similarly, for three-dimensional sampling the 
exponent  for small faults would be - 4 ,  indicating nc + 1 

= 4 or nc = 3. However,  the exponent  for large faults 
would still be - 3 .  The graph of sampled numbers of 
faults would now have a downward kink at L = 10 km 
(Fig. 2c). 

Because only a small range of data is available for 
L > 10 km in Fig. 1, one may well not notice the kinks in 
Figs. 2(b) & (c), but may instead extrapolate the trend 
through the small faults into the range of L for large 
faults. Careful inspection of Fig. 1 indicates that Heifer  
& Bevan (1990) may have unwittingly done this. For 
L > 10 km, their data points appear to diverge above 
their fitted line, suggesting that the true value of nc + 1 

for large normal faults in the Gulf of Suez is substantially 
less than 3, indicating that nc  for these faults is substan- 
tially less than 2: possibly as low as - 1 .  

The many plots of NI(D ) for the North Sea in Walsh et 

al. (1991) show exponents uniformly - 0 . 8  across the size 
range for both small and large faults. For the small faults 
this exponent  means cl = 0.8, making (for n = 1) c = 2.8, 
whereas for the large faults it means c = 0.8. If either 
two- or three-dimensional sampling had been carried 
out, the difference in exponent would have been obvi- 
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2-D incremental distribution of faults in the Gulf of Suez 
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3-D incremental distribution of faults in the Gulf of Suez 
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Fig. 2. Logari thmic graphs of incremental  distributions of faults in the Gulf  of  Suez consistent with the fitted line for 
two-dimensional sampling in Fig. 1. (a) Incremental  two-dimensional distribution 6NE(L ) for k = 0.1 in 1.1 x 10 5 km 2 of 
two-dimensional area. (b) Incremental  one-dimensional  distribution tSN](L) for k = 0.1 in 1.1 x 10 4 km of one-dimensional  

sample length. (c) Incremental  three-dimensional  distribution 6N(L) for k = 0.1 in 1.1 x 10 6 km 3 of crustal volume. 

ous. Unlike Heifer  & Bevan (1990), Walsh et el. (1991) 
show data for more than an order  of magnitude range of 
D for large faults (D from - 1 0 0  m to ~4  km). Their  data 
thus support c for large faults close to - 0 . 8 .  This is 
similar to the value for large faults in Japan in Scholz & 
Cowie (1990), who plotted a distribution of d N 2 ( L ) d L  
for large faults with exponent  nc + 1 = 2.1 (for nc = 1.1). 

Populations of large faults may well have substantially 
smaller exponents (perhaps typically with c - 1) than 
small faults (perhaps typically with c - 3). However ,  
effects of sampling may well frequently cause one- or 
two-dimensional sample exponents for populations of 
small faults that are comparable to the three- 
dimensional exponents for the large faults. This may 
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well be why the notion that small and large faults follow 
a single self-similar distribution has arisen. 

As already noted, most studies sampling fault popu- 
lations have presented their results using cumulative 
distributions, although a few, such as Heifer & Bevan 
(1990), used incremental distributions instead. The 
above discussion demonstrates one potential problem 
with cumulative distributions: the cumulative total of 
large faults sampled affects the cumulative number of 
small faults, sometimes making it difficult to separate 
the two populations. Another significant potential prac- 
tical difficulty when using cumulative distributions arises 
through censoring (e.g. Jackson & Sanderson 1992): if a 
small number of the largest faults in a study area are 
missed, the cumulative distribution will become skewed 
down to a much smaller size range of faults, making it 
difficult to fit a power law. Inspection of Appendix 1 
indicates that before any cumulative fault distribution is 
used to calculate strain, it needs to be differentiated, 
which in effect means converting it to an incremental 
distribution. Appendix 3 shows that the same is true if 
one wishes to use any cumulative distribution to calcu- 
late fault spacings. These analyses are greatly simplified, 
populations of small and large faults with different 
power laws are more easily isolated, and effects of 
censoring are avoided, if fault populations are expressed 
using incremental distributions; no other loss of infor- 
mation results. 

CONCLUSIONS 

This study derives algebra for quantifying populations 
of small faults, with length less than the thickness of the 
brittle layer. This algebra is used to estimate tectonic 
strain and typical fault spacings, and to interrelate obser- 
vations from different methods of sampling small faults. 
Results are listed in Tables 3 and 4 for the three case 
study regions, the Gulf of Suez, the northern North Sea, 
and the Badajoz-Cordoba fault zone. This study estab- 
lished that the strain associated with small faults can be 
determined without any need to assume self-similarity 
between small and large faults in any given region. 
Consistent results can be obtained regardless of how the 
small faults are sampled. 

Results differ dramatically from those of previous 
studies that do assume self-similarity between these two 
fault populations. For instance, the strain associated 
with small normal faults in the North Sea is estimated as 
<20% of the total, in contrast with values of -40--60% 
obtained previously. Populations of small and large 
faults may appear self-similar in a given region when 
examined using a particular sampling method, but this 
apparent self-similarity disappears when other methods 
are used (Fig. 2). The exponent c for the three- 
dimensional number-density distribution of faults may 
typically be - 3  for small faults, but appears to be >~1 for 
large faults instead. Small strike-slip faults in the 
Badajoz-Cordoba fault zone are roughly four times 
more closely spaced at each scale than the small normal 

faults in both extensional provinces considered, and 
accommodate correspondingly greater strain. 

Most recent studies of fault populations have analysed 
cumulative distributions of faults. This study indicates 
several important advantages of using incremental dis- 
tributions instead. In particular, first, it is easier to 
isolate and treat separately populations of small and 
large faults that may have different exponents, for 
example for estimating strain. Second, the equations 
needed to analyse incremental distributions of faults are 
typically much simpler than the corresponding forms for 
cumulative distributions. The equations derived in this 
study, and the techniques for applying them, will hope- 
fully be of use for analysing populations of faults in other 
regions that have not yet been studied. 
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APPENDIX 1 
G E O M E T R I C  MOMENT AND STRAIN F O R  

SMALL FAULTS 

Three-dimensional distributions o f  small faults 

Assuming equation (2) describes the number N of faults with 
displacement no less than D, N can be written using (1) as a function of 
L as 

N = aB-CWJHL -no. (AI.1)  

Thus 

dN/dL = -aB-CcnWJHL -s-n~. (A1.2) 

Cumulative geometric moment  Y..M s equals f - d N I d L M s ( L ) d L .  
Thus, using (A1.2) 

XMg = f aB-CcnWJHL s +n-ncdL (A1.3) 

with integration limits Lrain to L o covering the length range of the 
population of small faults. 

Provided n - nc does not equal - 2 ,  (A1.3) integrates to 

-rot. / .  (AI.4)  EM s = aBS-CcnWJH(L~ +n-no _ 12+n-no) 

2 + n - n c  

XMf is thus finite regardless of L0 and Lmin, and if 2 + n - nc is 
posRive, as is expected, the effect of  the lower limits of integration will 
be minimal. 

If n - nc equals - 2 ,  or 

n = 2/(c - 1), (Al .5)  

(A1.3) integrates instead to 

Xmg = aB s -ccnWJn In (L0/Lmin). (A1.6) 

With n = 1 this requires c = 3, such that nc = 3; with n = 1.46 it 
requires c = 2.37, such that nc = 3.46. In this case for ZM s to remain 
finite requires Lrain non-zero. 

Geometric moment  can be converted to strain using equation (11). 
Equations (A1.4) and (A1.6) give 

aBl-Ccn sin (26)[L 2+ . . . . .  12+n-nc] 
~mln # (A1.7) E =  

2(2 + n - nc) 

and 

e = aBl-Ccn sin (2t~) In (L0/Lmln). (A1.8) 
2 

One-dimensional samples 

Suppose that in one-dimensional sampling of profile length W one 
obtains 

Ns(D ) = asWD-C,, (A1.9) 

where a 1 has dimensions of length to the power of cl - 1. Differen- 
tiating gives the number of faults with displacement D in the one- 
dimensional sample: 

dNl/dD = -csal  W D  - l - q .  (AI.10) 

Let H and J denote the dimensions, in directions perpendicular to the 
sample line, of  the volume from which the sample is derived. Assum- 
ing the sampled faults are equidimensional and randomly distributed 

in three dimensions, the probability that any given fault is sampled is 
p l (D)  = pl(L)  = L2/Hj if its orientation is perpendicular to the sample 
line. If the typical orientation of the fault planes makes an angle 0 
relative to the direction in which J is measured, and makes an angle 6 
relative to the normal to the direction in which Hi s  measured, then the 
area of  the fauitplane projected into the direction perpendicular to the 
sample line is LZcos (0) sin (6), and the probability that a given fault is 
sampled becomes 

pl(D) = p l (L)  = L 2 cos (0) sin (¢~)IHJ. ( A I . l l )  

Thus 

dNI(D)/dD = dN(D)/dD p1(D). (A1.12) 

Differentiating (2) gives: 

dN/dD = -caWJHD- s-c. (A1.13) 

Using (A1.10), (A1.12) and (A1.13), this gives 

alelD-q = ac cos (O) sin (iS) B -z/n D -c+2/n. (A1.14) 

Thus, 

ci = c - 2/n (AI.15) 

(as shown by Marrett & Allmendingcr 1991), and 

a = asB~"csl[c cos (0) sin (6)]. (AI.16) 

Note that, if length is in metres,  a has units m c-3; a I has units nf~- s 
or mC-21n-s; B has units m l-~, and B ~n thus has units n,~ n-2. Thus, 
as B2tn has units m c-2/~- 1+21n-2 or m c-3, the same units as a. Equation 
(AI.16) is thus dimensionally consistent. All fractional powers of 
length cancel when quantities are substituted into (A1.7) to estimate 
strain. Note also that for (A1.8) to describe strain requires cs = 1 
regardless of n. 

By substituting from (1), (A1.14) and (A1.15), given that sin (26) = 
2 sin (6) cos (~), equations (A1.7) and (A1.8) become 

e = ascl cos (c~)[O~ -~' - DImi-~ '] (Al.17) 
(1 - el) cos (0) 

and: 

alclB s --el COS ( 6 )  In (Do/Dmin)" 
e = (A1.18) 

cos (0) 

However,  from (A1.5), when (A1.18) is applicable 

cs = c - 2/n = 2/n + 1 - 2/n = 1. (A1.19) 

Thus 1 - ct = 0, and (A1.18) simplifies to: 

e = al cos (6) In (Do/Dmir~). (A1.20) 
cos (0) 

From (A1.9), al has units of metres to the power of c -  3 - (2/n)(1 - n), 
which are dimensionless when c and n are related via (A1.5). Equation 
(A1.20) is thus dimensionally consistent. 

Whether  (A1.17) and (A1.20) are more convenient than (A1.6) and 
(A1.8) depends on which parameters one knows: if as and q are 
obtained from one-dimensional sampling and Do and Dmi n are known 
independently, then (A1.17) or (A1.20) is probably the more useful. If 
as and ct are known independently but Do and Drain are not, the most 
convenient forms are probably: 

-- Lmm ' 1 (A1.21) e = alcIBs-c' COS (6)[L~ (s-c') nO-c )! 

cos (0) 

and 

e = a l n  sin (t~) In (Lo/Lmin)" (A1.22) 
cos (0) 

Two-dimensional samples 

Suppose the three-dimensional distribution of  small faults in a 
region follows equation (2). In two-dimensional sampling of the 
region, which has dimensions W and J in the sampling plane, one will 
obtain 

N2(D ) = aeWJD -c2. (A1.23) 

where N 2 is the number of faults with displacement no less then D. 
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Differentiating (A1.23) gives the number of faults with displacement 
D observed in two-dimensional sampling: 

dN21dD = -c2a2WJD -l-c2.  (A1.24) 

Assuming all small faults are equidimensional, the probability that any 
given small fault is sampled is p2(D) = p2(L) = L I H  if the faults are 
typically oriented perpendicular to the sampling plane, where H is the 
width of the sampled volume in this perpendicular direction. If faults 
are typically oriented at angle 6 to the sampling plane, the typical 
length of fault perpendicular to the sampling plane is L sin (6), and the 
probability that it is sampled becomes 

p2(O) = P2(L) = L sin (6)//-/. (A1.25) 

Thus 

dN2(O)/dO = dN(D)/dO p2(O). (AI.26) 

Combining (AI. 14) and (AI.26) gives 

a2c2 D-c2 = ac sin (6)B-1/nD -c+l/n. (A1.27) 

T h U S ,  

and 

c 2 = c - 1/n (A1.28) 

a = a2Bllnc2/(c sin (6)). (A1.29) 

Similar results to (A1.17), (A1.20), (A1.21) and (A1.22) can be 
derived for two-dimensional sampling. Combining (A1.5) and (A1.16) 
g i v e s :  

n = 1 / ( c  2 - 1) (A1.30) 

as the condition for (A1.8) to describe strain. 
The above equations for strain can be written in many forms, as for 

one-dimensional sampling. Probably the most useful are: 

DI--c  2 ~ o  /A~fl(l+n--nc 2) l(l+n--nc2)] 
f = a2t'2 . . . .  i v / [ ~  0 -- ~ m l .  ~ (A1.31) 

(1 + n - nc2) 

for (AI.7) and 

e = aEc2nB 1-c2 c o s  ( 6 )  In ( L 0 / L m i n )  (A1.32) 

for (A1.8). They do not simplify as much as the one-dimensional 
equations, and their dependence on B and n is more explicit. This is 
because there is no unique value ofc 2 where either (A1.31) or (A1.32) 
describes strain, unlike for one-dimensional sampling where (A1.8) is 
applicable when cl = 1. 

One may obtain a two-dimensional sample N2(L ) instead of N 2 (D). 
Assuming D = BL" ,  

N2(L ) = a2WJB-C2L -nc'-. (A1.33) 

One may also obtain a two-dimensional incremental sample dN 2/dL, 
where 

d N 2  = -nc2a2WJB-CeL  -nc2-1. (A1.34) 
dL 

The parameter y in Fig. 1 is ( -  I lWJ)  dN21dL , so 

y = nc2a2B-C2L-nc2 -1. (A1.35) 

Ify is expressed as y = yo L - " c : l  (or y = yo L-no) then 

Yo = nc2a2 B-¢2, (A1.36) 

The units of Y0 will be m~C: -2 or maC-3; they are dimensionless when 
n c  2 ---- 2 (or nc = 3). 

= yoB cos (6) In (LolLml,)  (A1.39) 

for (A1.8). These seem to be the simplest forms in which strain can be 
expressed. The units of y0B are m '~-3 or rn ~c-2-~ , which simplify to 
m ' ~ - "  using (A1.19). Because (A1.39) is only applicable when q = I, 
the units of e are dimensionless, as is required. Equation (A1.39) is 
thus dimensionally consistent. 

At first sight, (A1.22) appears to be the simplest form of all, as it 
does not depend explicitly on B. However, by substituting between 
(A1.36) and (A1.16), al can be expressed in terms of Yo as 

al = Y0 cos (0) Bql(nc O. (A1.40) 

If this substitution is made, recalling that (A1.22) is only valid with q 
= 1, (A1.22) can easily be shown to be equivalent to (A1.39); it does 
indeed depend on B. 

One-dimensional sampling for  fault  displacement 

Consider a one-dimensional cumulative sampling NI(D), along a 
profile with length W, of a population of faults which follows equation 
(A1.9). The total displacement on the faults with individual displace- 
ment between D and D + dD is ( -dN1/dD)D dD. The overall 
displacement across faults with individual displacement between Dmi, 
and Do is thus 

I °° ZD = ( d N J d D ) D  d D  (A1.41) 
Dn,ia 

J 
D0 

= a l c l W D - q  dD.  (A1.42) 
Dmia 

Thus 

IED = ~ ( D ~ - q  - --m,n/-~l-c'$, (A1.43) 

for Cl < I and 

E D  = atcl W In ( D o / D m i n )  (A1.44) 

for cl = 1. The overall displacement is proportional to the length of 
profile, as is expected. Note that in these cases it does not matter 
whether the faults cut the brittle layer. 

For a profile parallel to the extension direction across a set of normal 
faults with dip 6 and extension perpendicular to strike (i.e. 0 = 0 °) 
provided ED << W, the extensional strain t is approximately given by 
E D  cos (6)IW. Thus for (A1.43), 

e = alCl COS ( 6 )  r r d - c l  n l _ c t ,  ' (A1.45) 
I -- C I tz'0 -- z'rain ] 

and is consistent with (AI.17). 
Equations (A1.17) and (A1.45) do not depend explicitly on B or n. 

It is thus possible to estimate the strain contribution of (or overall 
displacement across) a set of small faults up to an arbitrary displace- 
ment limit Do using only the results of one-dimensional sampling, 
without assuming any particular relation between D and L. However, 
to estimate the contribution of the entire population of small faults, 
one needs to know the value of D O for the largest small fault, which has 
length L0, which requires the relation between D and L. To make this 
explicit, one can substitute (At. 17) using (1), to get 

= -- L m i n  '] .  (A1.46) t o : 1  cos (6)Bl-C,[L0 l-c, l -c  
(1 - c~) cos (0) 

Where D O is constrained via Lo, equation (A1.17) thus also depends on 
B. 

Comparison o f  equations 

Substituting between (A1.29) and (A1.36), the general relation 
between Y0 and a is simply expressed as: 

a = yolV/[nc sin (6)]. (A1.37) 

Substituting using (A1.29) and (A1.37) gives 

yo B cos (6)[L~ + ..... 1.2+,-,O 
~ m i n  J (A1.38) E =  

(2 + n - nc) 

for (A1.7) and 

APPENDIX 2 
COMPARISONS OF SAMPLING METHODS FOR 

CUMULATIVE DISTRIBUTIONS 

This Appendix compares predictions of fault spacings based on 
different methods of sampling cumulative fault distributions. 

Numbers of faults with length L or above found by one-dimensional 
sampling along a line with length W1 are given by (A1.9). The length 
needed to be sampled to encounter one fault with length Lo is thus 

W1 = IVIL'~qa~ 1 (A2.1) 
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which can be rearranged using (A1.16) and (A1.37) to give 

W l  = L~qnc  fl[yo cos (0)]. (A2.2) 

From (2) and (A1.23), for two-dimensional sampling of an area A 2 
= W:,J 2 in a horizontal plane, 

N2(L) = a2W2J2B-C2L -nc2. (A2.3) 

N2(Lmax) = 1 corresponds to 

A 2 = L~C2BC2a~ 1. (A2.4) 

Using (AI.37), (A2.4) can be rewritten as 

.4. 2 = L~C2(nc2/Yo). (A2.5) 

If as before faults typically make an angle 0 relative to the width 
direction of the sampled area, and this width -/2 is equated to the 
projected length of the largest fault plane in this direction, L0 cos (0), 
then WE provides an estimate of the length of the area that typically 
needs to be sampled to find one fault with length L 0. Making this 
substitution, (A2.3) becomes: 

W 2 = L~Cmc2/[LoYocoS (0)] (A2.6) 

or, from (A1.15), 

W E = L'dqnc2/[y o cos (0)]. (A2.7) 

W 2 estimated using (A2.7) is thus c2/c 1 times W 1 estimated using 
(A2.2). 

A three-dimensional distribution of small faults can be regarded as 
situated in a volume of upper crust V = W J H ,  where His the thickness 
of the brittle upper crust. Let A 3 = W J  denote the horizontal cross- 
sectional area of this volume. For a three-dimensional distribution of 
small faults that follows equation (A1.1), the largest fault has L =/-max 
and corresponds to N(Lmax) = 1. From equation (At.  1), the value of V 
that typically contains one such fault is 

V = A 3 H  = L~CBCa-I. (A2.8) 

From (A2. I), 

A 3 = LgCBC. (A2.9) 
Ha 

Setting H = Lmax cos (6) and using (A1.29) and (A1.37), a can be 
substituted for Yo to give 

A 3 = LgC'-(nc/yo). (A2.10) 

A 3 from (A2.10) is thus c /c  2 times A 2 from (A2.5). 
The above analysis indicates that this approach to comparing 

methods of fault sampling leads to a major problem. Estimates for 
typical sizes of volumes and areas expected to contain one fault of a 
given length Lmax depend on the sampling method. Suppose two- 
dimensional sampling is carried out over a plane with area WJ.  From 
two-dimensional sampling, the number N2 of faults expected with 
length equal to or greater than/-'max = H/sin (6), where H is the brittle 
layer thickness, is 

N2(L0) = aEWJB-C'-Lo nc'-. (A2.11) 

Using (A1.29), this can be rearranged to give 

N2(L0) = a W J B - C L o  nc2 sin (6) c /c  2. (A2.12) 

From three-dimensional sampling of a volume W J H ,  the number of 
faults with length equal to or greater than L 0 would be 

N(  Lo) = a W J H B - C  L o  nc. (A2.13) 

Given that L0 = H/sin (6), 

N(Lo)  = a W J B - C L o  nc2 sin (6) (A2.14) 

which differs from N 2 by a factor c lc  2. Because faults with length L0 or 
greater cut the brittle layer, all should be sampled in two-dimensional 
sampling. One would thus expect N and N2 in this case to be equal. The 
fact that they are unequal indicates inconsistency in the method. 

This problem arises because the algebra treats all faults in the 
sampled region as though they were small faults. However, if the 
distribution of faults is assumed to be open-ended then a finite number 
will have length L0 or greater. When numbers of faults are evaluated 
for different dimensionalities of sampling, the algebra in use implicitly 
incorporates sampling probabilities for faults of all sizes. These prob- 
abilities are less than 1, and are thus meaningful, for faults with length 

less than Lo. However, when L is greater than Lo, sampling prob- 
abilities determined using (AI . l l )  or (A1.25) are greater than 1, and 
are thus not meaningful. Appendix 3 shows that this problem can be 
avoided by working using incremental fault distributions, enabling 
valid estimates to be made of the spacings of faults of any given size. 

APPENDIX 3 
COMPARISONS OF SAMPLING METHODS FOR 

INCREMENTAL DISTRIBUTIONS 

Appendix 2 showed that inconsistencies arise when numbers of 
small faults predicted from cumulative distributions are compared. In 
this Appendix results are derived for incremental distributions in- 
stead, and are shown to be consistent. 

Consider a three-dimensional distribution of fault that obeys (2). 
The number of faults with length L in volume W J H  is given by 

d N  = a W J H n c B _ C  L_,,c_ I. (A3.1) 
dL 

Let 6N denote the number of faults in the length range 6 L  about L, 
where 6 L  = k L ,  k being small. Thus: 

6 N  = a k W J H n c B - C L  -nc. (A3.2) 

Consider a two-dimensional distribution of small faults that obeys 
(A1.33). Substituting the small increments 6 N  2 for dN 2 and 6 L  = k L  
for dL, 

6 N  2 = kWJnc2a2B-C'-L -nq .  (A3.3) 

Substituting for a 2 using (A1.36): 

6N 2 = kWJYo L-nq. (A3.4) 

Substituting instead for a 2 using (AI.29), 

6 N  2 = k W J n c a B - C L - " C [ L  sin (6)], (A3.5) 

which simplifies, using (A1.25), to 

6N 2 = k W J H p 2 ( L ) n c a B - C L  -no. (A3.6) 

Comparison of (A3.2) and (A3.6) gives 

6 N  2 = p 2 ( L ) 6 N  (A3.7) 

consistent with the definition of p2 in Appendix 1. 
Consider a one-dimensional distribution of faults that obeys (A1.9). 

For this distribution, 

dNl  - a l W n c l B - q L - n q - k  (A3.8) 
dL 

As before, let 6N 1 denote the number of faults in the length range 6L 
about L, where 6L = k L ,  k being small. Thus: 

6 N  1 = a l k W n c l B - q L - " q .  (A3.9) 

Substituting for a I using (A1.16) gives 

6 N  1 = kWncaB-CL-nC[L  2 cos (0) sin (6)]. (A3.10) 

This simplifies using (A1.11), to 

6 N  l = k W J p l ( L ) n c a B - C L  -nc. (A3.11) 

Comparison of (A3.2) and (A3.11) gives 

6N1 = p t ( L ) 6 N ,  (A3.12) 

consistent with the definition ofpl  in Appendix 1. 
Using (A3.3), the typical area A = W J  that needs to be sampled to 

find one fault with length L0, for which P2 = 1, can be estimated, by 
setting 6N 2 = 1, as 

A = W J  = BC2L~C2/[knc2a2]. (A3.13) 

Using (A3.2), the typical volume V = W J H  that needs to be sampled to 
find one fault with length Lma x can be estimated, by setting 6 N  = 1, as 

V = W J H  = tVL'ff /[knca].  (A3.14) 

By substituting using (A1.29), it can easily be shown that (A3.13) and 
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(A3.14) are always consistent. One potentially useful form into which 
(A3.13) can be arranged is 

A = - W J  = BCL'dC#[knca sin (6)]. (A3.15) 

Finally, substituting using (1), (A1.29) and (A1.36), equation 
(A3.2) can be converted to 

6 N  = yokWJHL-nC/s in  (6). (A3.16) 

Equation (A3.16) shows that if Y0 and nc  are observed from two- 
dimensional incremental samples of fault lengths, then numbers of 
faults around any given length can be determined independently of the 
parameters B and n that define the relation between D and L. The 
same is not necessarily true if other sampling methods are used. 
Equations (A3.3) and (A3.9) clearly depend on n and B, and indicate 

that numbers of faults around any given length cannot uniquely be 
determined from either one- or two-dimensional samples of cumulat- 
ive distributions of fault numbers against L. Rearranging these 
equations in terms of D gives 

tSN~ = a lkWnclD-C~ (A3.17) 

for the one-dimensional equation (A3.9) and 

6 N  2 = kWJnc2a2 D-c2 (A3.18) 

for the two-dimensional equation (A3.3). One-dimensional (or two- 
dimensional) samples of cumulative numbers of faults against D can 
give directly a I and c I (or a 2 and c2) , but independent information 
about n is required to determine numbers of faults in any given 
displacement range. 


